
MarunaBot V2: Towards End-to-End Multi-Modal
Task-Oriented Dialogue Systems

Chris Samarinas∗, Pracha Promthaw, Rohan Lekhwani, Sheshera Mysore,
Sung Ming Huang, Atharva Nijasure, Hansi Zeng, Hamed Zamani†

Center for Intelligent Information Retrieval
Manning College of Information and Computer Sciences

University of Massachusetts Amherst

{csamarinas, ppromthaw, rlekhwani, smysore, sungminghuan,
anijasure, hzeng, zamani}@umass.edu

Abstract

We introduce MarunaBot V2, an advanced Task-Oriented Dialogue System (TODS)
primarily aimed at aiding users in cooking and Do-It-Yourself tasks. We utilized
large language models (LLMs) for data generation and inference, and implemented
hybrid methods for intent classification, retrieval, and question answering, striking
a balance between efficiency and performance. A key feature of our system is
its multi-modal capabilities. We have incorporated a multi-modal enrichment
technique that uses a fine-tuned CLIP model to supplement recipe instructions with
pertinent images, a custom Diffusion model for image enhancement and generation,
and a method for multi-modal option matching. A unique aspect of our system is
its user-centric development approach, facilitated by a custom tool for tracking user
interactions and swiftly integrating feedback. Finally, we showcase the promising
results of our end-to-end retrieval-augmented LLM taskbot, MarunaChef, and set a
promising precedent for future task-oriented dialogue systems.

1 Introduction

Recently, the artificial intelligence landscape has undergone a paradigm shift due to significant
advancements in large language models (LLMs). This shift is particularly evident in the field of task-
oriented dialog systems (TODS) [20], where systems are evolving to become more competent and
user-centric. In this emerging context, we introduce MarunaBot V2, our new system for the second
iteration of the Alexa Prize Taskbot Challenge. MarunaBot is designed to assist with daily tasks
such as recipes and DIY, leveraging LLMs for data generation and inference to deliver high-quality
interactions marked by enhanced robustness and scalability.

The motivation behind this iteration of MarunaBot, is to address the unmet needs of users seeking a
more engaging and responsive dialogue while navigating complex cooking or DIY tasks. We created
a seamless user experience, employing a flexible dialog management logic that can mitigate the
effects of unpredictable user behaviour to a high extent. Our system has improved rapidly in many
iterations thanks to the usage of a custom monitoring tool we developed for systematic error analysis.

We have put a lot of emphasis on task search quality. Our four-stage retrieval pipeline delivers high
quality and diverse results by fusing many types of signals, including semantic relevance, popularity,
rating and rarity of required tools and ingredients.

∗Team Lead †Faculty Advisor

1st Proceedings of Alexa Prize TaskBot (Alexa Prize 2021).



MarunaBot uniquely incorporates multi-modality, aiming to augment user interaction by integrating
diverse forms of information such as text, images, and videos from multiple sources. We have also
developed models for text-based image retrieval, image generation and enhancement in order to
further enrich and improve our corpus. A unique feature of our system is visual option matching,
which allows users to select recipes based on their visual features.

Our final and most important contribution is the introduction of an early end-to-end system, based
on a retrieval-augmented Large Language Model aligned using synthetic conversational data. This
model aims to simplify the underlying system design significantly by replacing the dialog manager.
Our early empirical experiments indicate that an end-to-end system has the potential to be more
efficient, robust, and engaging without being prone to hallucinations. This underscores the viability
of this approach as pivotal to the next generation of task-oriented dialog systems.

2 System Overview

The architecture of our system is summarized in Figure 1. We have constructed our taskbot utilizing
the Cobot Toolkit framework, which has significantly reduced our engineering time, allowing us to
concentrate primarily on research. The interaction between our taskbot and the user is facilitated
through a multi-modal or headless Alexa device. We process a variety of user signals, including
speech, text, and touch events. Once these input signals are transformed into text or action, they are
forwarded to the core component, the dialogue manager (DM). The DM interacts with two hybrid
models to determine the appropriate response generator for the given user input, namely the intent
classifier and the option matching. We have developed 21 distinct response generators that the
DM utilizes, including those for presenting search results, displaying step information, answering
questions, and engaging in chitchat (see figure 2 for an example and the appendix for the whole list).
The question answering and chitchat response generators interact with two external models. For
option matching and intent classification, we employ an ensemble approach that leverages two types
of large language models, FlanT5 [3] and ChatGPT [14], (GPT-3.5/4). As ChatGPT is an external
service, we implement a vocabulary filter approach to ensure sensitive personal information is not
transmitted outside our infrastructure, thereby preserving data privacy. This vocabulary filter verifies
whether all words in a given utterance are present in a set of words compiled from our corpus. If an
utterance fails to pass the filter, external APIs are not utilized.

Figure 1: The architecture of MarunaBot V2. The blue blocks denote our models (hosted on EC2 or
SageMaker), while the red blocks represent LLMs accessed through external APIs after utterance
filtering is conducted to ensure data privacy. The components enclosed by dashed borders are those
provided by the Cobot Toolkit and used without modifications.

In the following sections, we present our approach to corpus construction, our models and research
findings for various tasks including intent classification, task retrieval, question answering, and multi-
modality. We discuss our user-driven development approach and finally, we present our preliminary
results from our end-to-end retrieval-augmented taskbot using a custom large language model.

2



Figure 2: An example conversation (not from real user), the identified intents and the called response
generators in each case.

3 Intent Classification

Accurate and robust intent classification is a critical aspect of task-oriented dialogue systems, as it
dictates the flow of interaction between the user and the system. Misclassification often leads to
irrelevant or unsatisfactory responses, negatively impacting the user experience. To address this,
our system is designed to accommodate a broad spectrum of user requests, including those that are
out-of-domain or potentially unsupported. We have defined a comprehensive taxonomy of 36 intents
to enable a more sophisticated user-system interaction (see Table 9 in appendix). These intents range
from navigation and content filtering to domain classification, ambiguous requests, and out-of-domain
inquiries. Certain intents require slot-filling (e.g. search intents, ingredient substitution, and timer
setting), which is performed jointly using a single model.

In-Context Learning The lack of abundant training data presented a significant challenge. To
mitigate this, we adopted a few-shot learning approach with in-context learning [5], utilizing FlanT5-
XXL [3]. We created a prompt that included input and output few-shot examples for all intents.
However, this initial approach was not sufficiently robust and exhibited high latency, reaching up to 2
seconds due to the lengthy prompt (629 tokens).

Retrieval Augmentation To decrease inference time, we experimented with reducing the prompt
length without compromising its effectiveness. We employed a pre-trained transformer-based bi-
encoder 3 to retrieve the most relevant few-shot examples corresponding to the given input utterance.
This strategy successfully reduced the average inference time from 1.6 seconds to 0.5 seconds using
the three closest few-shot examples, while simultaneously improving the macro F1 score by 2%. The
effectiveness of the retrieval augmentation strategy can be seen in Figure 3 below.

Synthetic Data Generation For this task we relied on synthetic data generation using ChatGPT. We
investigated the usage of real user utterances from past conversations as training data after manual
and automatic annotation with GPT-4, but we observed lack of diversity and infrequent representation
of many classes, at least in the first months of the Taskbot Challenge. For this reason, we relied
only on automatically generated user utterances. For each intent class, we constructed a prompt

3 https://hf.co/sentence-transformers/all-mpnet-base-v2

3

https://hf.co/sentence-transformers/all-mpnet-base-v2


Figure 3: Few-Shot Intent Classification Results with top-3 retrieval augmentation

Table 1: Comparison of various models for intent classification

Model Accuracy Macro F1
FlanT5-XXL (prompting) 0.68 0.59
FlanT5-XL (fine-tuned) 0.76 0.66
DeBERTa (fine-tuned) 0.55 0.48
mpnet-base-v2 (contrastive fine-tuning) 0.66 0.57
GPT-4 (prompting) 0.74 0.65

that encapsulated the role/setting (user interacting with a taskbot assisting with recipes and tasks), a
succinct description of the intent, and 3-5 seed examples. We utilized ChatGPT (versions 3.5 and
4) to generate 2000 (1000 from each model version) synthetic utterance examples for each intent
class, with temperature values ranging from 0.7 to 1.0, contingent on the intent type. Near-duplicate
utterances were eliminated using nearest-neighbor retrieval with a pre-trained text bi-encoder 3 and
empirically defined dot product threshold.

Experimental Results We curated a test set manually, comprising 785 examples that covered all the
defined intents. Using this set, we computed precision, recall, and F1 for each class, as well as macro
F1 as our aggregate metric. Using the synthetic data, we fine-tuned FlanT5, DeBERTa, and mp-net
bi-encoder 3 with contrastive distance-dependent loss [7]. Our FlanT5-XL model outperformed
the other fine-tuned models. We also compared our model with GPT-4 using the few-shot prompt
and found performance to be very similar to the fine-tuned FlanT5-XL. The results can be seen in
Table 1. For more detailed results per intent you can refer to the appendix. Interestingly, GPT-4
exhibited greater robustness in practice, suggesting that our curated test set may not fully evaluate the
robustness of our best fine-tuned model. This finding prompts questions about the design of datasets
for evaluating complex tasks that are prone to high variability and noise in real-world scenarios.

Hybrid Approach Our final approach to intent classification is a hybrid one, incorporating zero-shot
FlanT5 & GPT-4, fine-tuned FlanT5, and rule-based methods. Rules are given the highest priority,
followed by the fine-tuned FlanT5-Large, and then a concurrent call of FlanT5-XXL and GPT-4. The
latter two are only invoked for infrequent intents due to their increased latency. For instance, for
navigation-related intents (next step, acknowledge), only the efficient FlanT5-Large model is utilized.
When calling FlanT5-XXL and GPT-4, we prioritize the output of GPT-4 if a timeout constraint of 4
seconds is met. This hybrid approach allows us to harness the strengths of different models, ensuring
a more robust and efficient intent classification system.

4 Task Retrieval

The retrieval system of MarunaBot V2 handles the pivotal task of sourcing the appropriate recipe or
DIY instructions in response to a user’s request. This complex process was addressed through careful
data gathering, optimization of the retrieval models, and utilization of LLMs for for complex queries.

4



Figure 4: Overview of the task retrieval pipeline.

Corpus Construction We compiled a comprehensive corpus from various sources, resulting in a
unified corpus encompassing 81,593 tasks and recipes (16k recipes and 65k tasks). Prior to inclusion,
potential content underwent a rigorous screening process with GPT-3.5 to filter out any inappropriate
information, such as medical, legal, financial advice, or dangerous tasks. LLMs, particularly GPT-4
and GPT-3.5, were employed to curate and generate considerable metadata (including tips, tools,
positive statements, fun facts, summaries, related tasks) to enrich the user’s experience.

Retrieval Pipeline Our retrieval pipeline (Figure 4) fuses into one result quality score two types of
signals; relevance and attribute-related. The relevance signal is supplied by the semantic retriever
after a two stage process using a pre-trained bi-encoder followed by a fine-tuned cross-encoder
(more details in section 4.1). The attribute-related signals include popularity, rating, difficulty, rarity
of ingredients or tools, and popularity estimates from the web. The final stage of the pipeline is
diversification of the results using Maximal Marginal Relevance (MMR) [2]. This ensures that there
is not a lot of repetition in the first presented results to the user.

Grounded LLM-based Results For more complex queries that not explicitly mention specific recipe
names, such as queries related to occasions or personal preferences, GPT-3.5 was instrumental in
suggesting appropriate recipes and recommending related results in the end of each task. The LLM-
based suggestions were further grounded to our corpus using our custom retrieval model described in
the following section.

4.1 Retrieval Models

We employ a two-stage retrieval pipeline using Transformer language model biencoders for initial
retrieval and cross-encoders for re-ranking. Synthetic queries for training are generated from a
collection of documents using GPT-3.5 and GPT-3.

Synthetic data generation We sample 60k wikihow documents and recipes from our 300k document
collection, generating three synthetic queries per document using a mixture of GPT-3.5 and GPT-3,
resulting in 180k positive pairs. The queries exhibit different characteristics, with GPT-3 queries
being more extractive and ChatGPT queries requiring social and common sense knowledge [1, 13].

Retrieval models Bi-encoder and cross-encoder models are trained on synthetic data using a pre-
trained transformer language model, MPNET [18]. Bi-encoder models embed the query and item
independently into vectors and rank items based on the minimum L2 distance. Cross-encoder models
input both the query and item and output a score for ranking. We train our models with margin
ranking loss and cross-entropy loss, respectively.

Experimental Setup We evaluate our models on a unified collection of 300k wikihow and recipe
documents. BiEnc-Syn retrieves documents from the whole collection, while CrEnc-Syn re-ranks
the top 30 documents from a baseline bi-encoder MPNet-250QA. Evaluation is done using a held-out
set of synthetic queries and their corresponding documents, following the 1-shot automatic relevance
estimation method of MacAvaney and Soldaini [12]. We compare our approach to several bi-encoder
and cross-encoder baselines, including Contriver, MPNet-1B, BERT-MSM, MPNet-250QA, and
MiniLM-MSM [9, 17].

Results Our trained bi-encoder underperforms the best prior biencoders, likely due to a smaller
training set and lack of optimized negative samples (Table 2). However, our trained CrEnc-Syn
outperforms several baseline models. We also ablate several design choices (Table 3), finding that
using description text improves results, re-ranking top 30 documents outperforms re-ranking top 200,
and MPNet-250QA outperforms the MPNet-1B model as a first stage ranker.

5



Description Model P@5 P@10 P@20

Off-the-shelf Biencoder

MPNet-1B 0.7165 0.6926 0.6769
MPNet-250QA 0.7250 0.6988 0.6790
BERT-MSM 0.7132 0.6897 0.6731
Contriver 0.6978 0.6806 0.6675

Fine-tuned Biencoder BiEnc-Syn 0.7114 0.6915 0.6764

Off-the-shelf Crossencoder MiniLM-MSM 0.7354 0.7079 0.687
Fine-tuned Crossencoder CrEnc-Syn 0.7422 0.715 0.6911

Table 2: Performance of pre-trained biencoders and cross-encoders compared against the cross-
encoder trained on synthetic queries generated for DIY and Recipe documents. Both cross-encoders
use MPNet-250QA biencoders for first-stage retrieval and re-rank the top 30 documents.

Description Model P@5 P@10 P@20
Best system CrEnc-Syn 0.7422 0.715 0.6911
Title text MiniLM-MSM 0.7173 0.6954 0.6750
Description text MiniLM-MSM 0.7314 0.7049 0.6836

Re-rank Top-30 MiniLM-MSM 0.7354 0.7079 0.6870
Re-rank Top-200 MiniLM-MSM 0.7286 0.7062 0.6887

Biencoder: MPNet-1B MiniLM-MSM 0.7314 0.7049 0.6836
Biencoder: MPNet-250QA MiniLM-MSM 0.7354 0.7079 0.6870

Table 3: Ablation experiments indicating the impact of design choices for cross-encoders. Our best
system uses a MPNet-250QA, re-ranks 30 documents, and uses description in addition to the title.

5 Question Answering

Our approach for question answering is a text-to-text model fine-tuned for QA. Given an input
question and passage (e.g. recipe or DIY instructions), our approach generates an answer from the
passage or identifies that the question cannot be answered from the passage. Our model is fine-tuned
on questions and answers synthetically generated from GPT-3.5.

Synthetic Data Generation Since we are interested in training a model for QA while also detecting
when the question is unanswerable from a passage, we generate synthetic answerable question-
answer pairs and unanswerable questions. To generate synthetic data for fine-tuning, we select
15,000 passages spanning DIY and Recipes. Then, ChatGPT is instructed to generate ten answerable
questions and their answers from the passage and ten unanswerable questions. This results in 300k
question-passage pairs for fine-tuning.

Models Our models for QA follow the T5 model architecture of varying sizes (770M and 3B
parameters) [16]. Our models are initialized from UnifiedQA models, T5 models fine-tuned on 20
different QA datasets and found to be a good initialization for several different QA benchmarks
[10, 11]. We further fine-tune UnifiedQA for DIY and recipe question answering.

Experimental Setup Our evaluation data is a random sample of 300 passages paired with their
question-answer pairs. Answerable question-answer pairs and unanswerable questions are syntheti-
cally generated and treated as correct – in manual examination the question answer pairs were often
found to be correct. Given that the answers in our test set are fluent natural language sentences we
used BertScore [21], a metric for evaluating text generation models by comparing generated texts to
a reference text, to compute evaluation metrics.

Baselines We compare our proposed models to the following zero-shot QA baselines, FlanT5 and
UnifiedQA. FlanT5 models are T5 models finetuned for instruction following and demonstrating
strong zero-shot performance on numerous benchmarks [3]. To refrain from generating answers for
unanswerable questions we instruct the model only to generate an answer where it is possible from the

6



Training Model Parameters All Unanswerable Answerable

Zero-shot

FlanT5-Large 770M 62.34 77.54 47.15
FlanT5-XL 3B 61.64 72.61 50.67

UnifiedQA-Large 770M 30.94 07.52 54.36
UnifiedQA-XL 3B 31.90 07.42 56.39

Fine-tuned
FlanT5-Large 770M 74.90 97.74 52.06

UnifiedQA-Large 770M 80.47 92.43 68.52
UnifiedQA-XL 3B 84.78 96.57 72.99

Table 4: Model performance for question answering in recipe and DIY passages. Metrics represent
macro-averages over questions in the test set. While “Answerable” reports the correctness of generated
answers, “Unanswerable” merely reports the ability of a model to detect an unanswerable question.
Performance is measured in F1 based on BERTSCORE based on a reference answer.

passage. We experiment with model variants with 770M parameters and 3B parameters. UnifiedQA
models are performant QA models pre-trained for QA on 20 different QA datasets [10, 11]. Notably,
these models cannot determine when questions are unanswerable from the provided passage.

Results Our proposed fine-tuned models significantly outperform baseline approaches based on
FlanT5 and UnifiedQA on both answrerable and unanswerable questions. Across model sizes, a
UnifiedQA model outperforms a FlanT5 model. While in zero-shot performance, the FlanT5 model
can detect unanswerable questions significantly better than a UnifiedQA model the UnifiedQA model
can generate more accurate answers for answerable questions. After fine-tuning, UnifiedQA models
outperformed FlanT5 models. While Large models sometimes match or outperform XL models, XL
models generally outperform Large models in the case of answerable questions; this trend holds
across FlanT5 and UnifiedQA models in zero-shot and fine-tuned setups.

6 Multimodal Integration

Task-oriented Dialogue Systems can significantly benefit from the integration of multiple communi-
cation modes, enriching the interaction and enhancing user experience. This section elaborates on
how we augmented our system with images using both retrieval and generative methods.

6.1 Retrieval-based Image Augmentation

We utilized two pre-trained CLIP models [15], CLIP-ViT-L14 and CLIP-ViT-B32, to conduct text-
based image retrieval experiments. Initially, we performed zero-shot image retrieval on the WikiHow
dataset’s embedding using both models. This was followed by data retrieval from the same dataset,
based on the embedding created from text and image features. We then fine-tuned both models using
our custom training data, which consisted of recipe-image-text pairs. The models underwent training
following the hyperparameter selection from Dong et al. [6]. We repeated the experiments using
these fine-tuned models and evaluated their performance using Mean Reciprocal Rank. We selected
25 sample queries, each representing a general recipe step. For each query in the WikiHow Dataset,
we ranked the top 10 images.

Dataset Collection We assembled the WikiHow recipe image-text dataset and employed a classifier
to determine whether an image represented a recipe. We also collected frames from over 40K recipe
step videos, using a CLIP_L14 threshold between frame and step text to enhance dataset quality. A
threshold score of 21 was used to ensure the quality of image-text matching. The text was the recipe
text associated with the step video. In total, we created 231k recipe-text image pairs.

The fine-tuned CLIP-ViT-B32 model demonstrated superior performance in retrieving relevant images.
The results are presented in Table 5. We observed improved retrieval with the fine-tuned model, where
the images were more closely aligned with the steps (figure 5 and more examples in the appendix).

7



Table 5: Experiments with CLIP for text-based recipe step image retrieval

Model Input MRR
clip-ViT-B-32 (zero-shot) image 0.1196
clip-ViT-B-32 (zero-shot) text + image 0.1973
clip-ViT-B-32 (fine-tuned) image 0.3151
clip-ViT-B-32 (fine-tuned) text + image 0.3764

Figure 5: The top 5 retrieved images for the query ’add shredded sweet potato and cook 1 to 2 minutes
or until it begins to stick to the pan.’ using zero-shot CLIP (top) and fine-tuned (bottom).

6.2 Generative Image Augmentation

Initially, we compiled a dataset of text-image pairs from our recipe steps corpus. We then used
ChatGPT (GPT3.5) to generate context-independent text, which served as the foundation for compre-
hensive image generation. Concurrently, we calculated the CLIP scores for these pairs and selected
the 100 pairs with the lowest scores, excluding context-dependent text. Then we fine-tuned a Stable
Diffusion model using LoRA [8] and the compiled corpus for recipe step image generation. We
generated images under various model configurations using these refined pairs. To compare the
performance of the generated images with the retrieved ones, we computed the CLIP scores. We
further nuanced this evaluation by experimenting with different LoRA weights.

Models Initially, we retrieved images from the corpus using the CLIP model. We then employed
the Stable Diffusion model, using the Euler ancestral sampling method, and a model checkpoint of
RealisticVision V3.0 4. We also explored the implementation of the Stable Diffusion model with our
fine-tuned LoRA for recipe step image generation. Here, we experimented with varying weights to
study their impact on the model’s performance. The weights under consideration ranged from 0.4 to
1.0. This approach provided insights into the influence of LoRA’s weight on image quality.

Results As per the results in Table 6, we found that the generated image significantly improved the
CLIP score compared to the retrieved image when the CLIP score was below 21. However, there was
no substantial difference in CLIP scores between the image generated with stable diffusion alone
and the one produced with LoRA. As depicted in Figure 6, the model incorporating LoRA tended to
generate images with a more consistent format, such as identical angles, and images leaning towards
action steps rather than post-cooking photos. The presence of noise within the training data, such as
text, low-resolution, and moving images, could potentially account for the resultant images lacking
the resolution and aesthetic quality of the original model. More results can be found in Figure 13 in
the appendix.

Table 6: CLIP score for image generation comparing to image retrieval approach

Model Mean Std.
Retrieved Image (baseline) 16.508 3.286
Generated Image + LoRA (weight = 0.4) 24.765 4.562
Generated Image 25.266 4.751

4 https://huggingface.co/SG161222/Realistic_Vision_V3.0_VAE

8

https://huggingface.co/SG161222/Realistic_Vision_V3.0_VAE


(a) Retrieved with CLIP (b) Generated (c) Generated with LoRA

Figure 6: Images for ’Scoop 1/4 cup of the beef and cheddar filling onto the wrapper.’

6.3 Enhancing Image Aesthetics

Figure 7: Improving aesthetics of a recipe image using Stable Diffusion and ControlNet

Our approach for image enhancement employs an image-to-image generation model. By inputting an
image and a prompt, we aim to generate an image that is visually more appealing while preserving
its original structure. The model incorporates the Stable Diffusion Model (Realistic Vision V4) in
conjunction with depth-based Controlnet and a custom LoRA5.

Enhancement Process We formulate the prompt for image generation by combining the recipe title
with its ingredients. This approach is adopted due to the observed limitations when using only the
title for image generation. For instance, when provided with the title "apple pie", the model generated
an image of a pie with a whole apple in the middle, which was not as per our expectations. However,
when the ingredients were incorporated into the prompt, the quality of the generated image improved
significantly.

Evaluation We sample 1k item from our recipe corpus, and calculate their aesthetic score with CLIP.
We pick the 100 item of the lowest aesthetic score and generate the images for each these items. After
we get enhanced image, we calculate their CLIP score and aesthetic score. The scores are in below
Table. We can see a significant improvement over the aesthetics while preserving the relevance of the
generated image.

Table 7: Relevance evaluation of generated images using CLIP

Type Enhanced Score

CLIP Score (0 to 1) No 0.3021
Yes 0.3040

Aesthetic Score (out of 10) No 4.933
Yes 5.983

The investigation centers on the utilization of recipe titles as the basis for scoring the relationship
between text and image, acknowledging that such titles may not comprehensively convey the visual
appearance of dishes. Consequently, the CLIP score did not exhibit significant improvements as
expected. Conversely, the aesthetic evaluations yielded noteworthy enhancements, indicating a
substantial improvement in the overall visual quality of the represented images.

5 https://civitai.com/models/45322/food-photography

9

https://civitai.com/models/45322/food-photography


6.4 Visual Option Matching

Visual option matching is a unique experimental feature in our system that allows the user to select a
presented recipe based on its visual appearance. Given an text query and the image of a given recipe,
we first extract the recipe name from the user’s utterance using FlanT5-XXL through prompting.
Then we try to identify a potential match between the given recipe name and the displayed images
with dot-product similarity. If a match above a threshold is found, we ask a clarifying question to the
user if they indeed selected that option (see Figure 8).

Figure 8: Example of visual match

7 End-to-end System

Figure 9: Overview of our intent-guided conversational data generation. We use a manually defined
system state transition graph and GPT-3.5 and GPT-4 as our response simulation models.

In our pursuit of a more streamlined and efficient task-oriented dialogue system, we conducted
preliminary experiments with an end-to-end Taskbot designed for the recipe domain. This system was
designed using only two components: our retriever and MarunaChef, a response generation Large
Language Model based on Llama 2 7B [19].

10



Grounded Conversational Data Generation To facilitate this, we generated 4000 synthetic conver-
sations in the recipe domain using real recipe information from our corpus as a seed. We employed
a novel state transition graph-guided method with a simulated user and system by GPT-3.5/4. This
approach allowed us to use an LLM to simulate both roles while guiding the conversation through
pre-defined intents. To enable the LLM to support multi-modal output, akin to our existing modular
taskbot, we incorporated additional state-related metadata in its simulated outputs. This included the
current step, selected option, and other relevant slots.

Training We fine-tuned the 7B LLaMA 2 model using the parameter-efficient fine-tuning method
QLoRA [4] on a single A100 GPU for 800 steps using the default parameters provided by the authors.
The early results from this experiment are very promising, demonstrating the model’s ability to
navigate through recipe instructions while providing engaging responses and correct state information.
For reference, an example conversation with MarunaChef can be found in the appendix.

We believe that this end-to-end approach represents the future of task-oriented dialogue systems. The
benefits are manifold: it leads to a simpler system design, improves efficiency, enhances robustness,
and ensures compliance with privacy regulations. We expect our end-to-end system to be extended to
open-domain and deployed in MarunaBot before the final stage of the Taskbot Challenge.

8 User-driven Development

The development of MarunaBot v2 followed a user-centric design approach. The system was
engineered with an anticipation of unpredictable user behavior, and strong emphasis on multimodal
device utility. In scenarios where user requests prove ambiguous, unclear, or outside the system’s
scope of support, MarunaBot is capable of generating appropriate responses that provide guidance
and clarifying the extents of its functional capabilities.

To enable this process, we developed a customized monitoring tool that provides a daily review
of user conversations and received feedback. This tool offered invaluable insights by identifying
patterns and common issues that were hindering the system’s usability. The tool further enabled the
visualization of an array of performance metrics over time influenced by this user-driven development
process, including the total number of conversations, identified issues, overall user ratings, interaction
durations, and the number of dialogue turns. The monitored conversations also served as a form of
continuous user feedback, aiding in the further fine-tuning of our intent classifier. On a daily basis,
the incorporation of real user utterances into our training data contributed to honing our taskbot’s
ability to correctly identify user intent and respond appropriately.

An experimental feature of our monitoring tool was implemented in the form of a rating estimate
mechanism driven by a language model. A DeBERTa-v3-large model was trained on 883 rated
user conversations with an input combined of user utterances, system responses, the intent class and
sentiment of the user’s utterance. Ratings greater than or equal to three were classified as a 1 and
those less than three as a 0. With this setup, our model achieved 0.7063 F1 score, with precision
0.7163 and recall 0.6966. Although the ratings assigned by the users were not always correlated to
their conversation quality with the bot, this approach yielded promising early results considering not
just what the user said but also how they said it using sentiment information.

Moreover, we conducted initial experiments with GPT-4 to detect specific issues in user conversations.
However, in compliance with our commitment to user privacy, these models were not deployed into
production environment, marking this as an area of potential exploration for future research.

9 Comparative Analysis

During the course of the challenge, our system, consistently remained within the top two teams
(see figure 10), demonstrating its robust performance and high utility for end-users. Nevertheless,
we noted a temporary decline in our leaderboard position due to a recent huge influx of noisy and
non-interactive conversations, despite maintaining the robustness and utilitarian value of our system
on a daily basis. Several distinct strengths characterize our approach:

1. Relevance of Search Results: MarunaBot takes the lead in providing highly relevant results,
taking into account a variety of factors, including, popularity, difficulty and user ratings with
a multi-step retrieval pipeline.

11



2. Intelligent Task Suggestions: One of the standout features of our bot is its ability to suggest
related recipes or tasks upon the completion of a given task or recipe.

3. Multi-Modal Augmentation: MarunaBot aligns each recipe step with a relevant image.
Although only two other systems attempt this, our system sets a high standard in matching
image relevance to corresponding recipe instructions.

A detailed comparison of MarunaBot+ and other bots, with respect to specific queries and features, can
be found in the comparative analysis table 11 in the appendix. Despite temporary minor fluctuations in
the ratings due to outliers, the robust and user-centric design, coupled with unique features, positions
MarunaBot+ as a leading contender in the landscape of task-oriented dialogue systems.

Figure 10: The ranking frequency of our taskbot during the whole challenge and the last 2 weeks of
the semifinals period. In both cases, it was often ranked in the top 2 places.

10 Conclusion & Future Work

In this paper, we introduced MarunaBot V2, an advanced Task-Oriented Dialogue System designed
to assist users in cooking and Do-It-Yourself tasks. Our system leverages large language models for
data generation and inference, and implements hybrid methods for intent classification, retrieval, and
question answering, thereby achieving an optimal balance between efficiency and performance. A
distinguishing feature of our system is its multi-modal capabilities, which include a multi-modal
enrichment technique using a fine-tuned CLIP model, a custom Diffusion model for image enhance-
ment and generation, and a method for multi-modal option matching. Our user-centric development
approach, facilitated by a custom tool for tracking user interactions and swiftly integrating feedback,
sets our system apart.

There are many areas where our system can improve. We identified the need to refine our approach
for generative image augmentation, specifically by filtering out frames or images containing text
or moving elements that could introduce noise into the generated image. We also recognized
the challenge of accurate intent classification. Future work will focus on enhancing the intent
classification model’s ability to predict correct context-dependent intents by classifying user utterances
based on sentiment and the user’s position within the conversation.

In conclusion, our end-to-end retrieval-augmented LLM taskbot, MarunaChef, demonstrated promis-
ing results, setting a positive precedent for future task-oriented dialogue systems.

Acknowledgments. We would like to thank Rahul Seetharaman for some early contributions to our taskbot. This
work was supported in part by the Center for Intelligent Information Retrieval and in part by an Alexa Prize
grant from Amazon. Any opinions, findings and conclusions or recommendations expressed in this material are
those of the authors and do not necessarily reflect those of the sponsors.

12



References
[1] L. Bonifacio, H. Abonizio, M. Fadaee, and R. Nogueira. Inpars: Unsupervised dataset generation for

information retrieval. In Proceedings of the 45th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR ’22, page 2387–2392, New York, NY, USA, 2022.
Association for Computing Machinery. ISBN 9781450387323. doi: 10.1145/3477495.3531863. URL
https://doi.org/10.1145/3477495.3531863.

[2] J. G. Carbonell and J. Goldstein-Stewart. The use of mmr, diversity-based reranking for reordering
documents and producing summaries. In Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, 1998. URL https://api.semanticscholar.org/CorpusID:
6334682.

[3] H. W. Chung, L. Hou, S. Longpre, B. Zoph, Y. Tay, W. Fedus, Y. Li, X. Wang, M. Dehghani, S. Brahma,
A. Webson, S. S. Gu, Z. Dai, M. Suzgun, X. Chen, A. Chowdhery, A. Castro-Ros, M. Pellat, K. Robinson,
D. Valter, S. Narang, G. Mishra, A. Yu, V. Zhao, Y. Huang, A. Dai, H. Yu, S. Petrov, E. H. Chi, J. Dean,
J. Devlin, A. Roberts, D. Zhou, Q. V. Le, and J. Wei. Scaling instruction-finetuned language models, 2022.

[4] T. Dettmers, A. Pagnoni, A. Holtzman, and L. Zettlemoyer. Qlora: Efficient finetuning of quantized llms,
2023.

[5] Q. Dong, L. Li, D. Dai, C. Zheng, Z. Wu, B. Chang, X. Sun, J. Xu, L. Li, and Z. Sui. A survey on in-context
learning, 2023.

[6] X. Dong, J. Bao, T. Zhang, D. Chen, S. Gu, W. Zhang, L. Yuan, D. Chen, F. Wen, and N. Yu. Clip itself is
a strong fine-tuner: Achieving 85.7% and 88.0% top-1 accuracy with vit-b and vit-l on imagenet. arXiv
preprint arXiv:2212.06138, 2022.

[7] A. Hattimare, A. Dharawat, Y. Khan, Y.-C. Lien, C. Samarinas, G. Z. Wei, Y. Yang, and H. Zamani.
Maruna bot: An extensible retrieval-focused framework for task-oriented dialogues. 2022. URL https:
//api.semanticscholar.org/CorpusID:248852357.

[8] E. J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. Lora: Low-rank
adaptation of large language models, 2021.

[9] G. Izacard, M. Caron, L. Hosseini, S. Riedel, P. Bojanowski, A. Joulin, and E. Grave. Unsupervised dense
information retrieval with contrastive learning. Transactions on Machine Learning Research, 2022. ISSN
2835-8856. URL https://openreview.net/forum?id=jKN1pXi7b0.

[10] D. Khashabi, S. Min, T. Khot, A. Sabharwal, O. Tafjord, P. Clark, and H. Hajishirzi. UNIFIEDQA: Crossing
format boundaries with a single QA system. In Findings of the Association for Computational Linguistics:
EMNLP 2020, pages 1896–1907, Online, Nov. 2020. Association for Computational Linguistics. doi:
10.18653/v1/2020.findings-emnlp.171. URL https://aclanthology.org/2020.findings-emnlp.
171.

[11] D. Khashabi, Y. Kordi, and H. Hajishirzi. Unifiedqa-v2: Stronger generalization via broader cross-format
training. arXiv preprint arXiv:2202.12359, 2022.

[12] S. MacAvaney and L. Soldaini. One-shot labeling for automatic relevance estimation. arXiv preprint
arXiv:2302.11266, 2023.

[13] S. Mysore, A. McCallum, and H. Zamani. Large language model augmented narrative driven recommenda-
tions. RecSys, 2023.

[14] L. Ouyang, J. Wu, X. Jiang, D. Almeida, C. L. Wainwright, P. Mishkin, C. Zhang, S. Agarwal, K. Slama,
A. Ray, J. Schulman, J. Hilton, F. Kelton, L. Miller, M. Simens, A. Askell, P. Welinder, P. Christiano,
J. Leike, and R. Lowe. Training language models to follow instructions with human feedback, 2022.

[15] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, G. Krueger, and I. Sutskever. Learning transferable visual models from natural language
supervision, 2021.

[16] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu. Exploring
the limits of transfer learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(1), jan 2020.
ISSN 1532-4435.

[17] N. Reimers and I. Gurevych. Sentence-bert: Sentence embeddings using siamese bert-networks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association
for Computational Linguistics, 11 2019. URL https://arxiv.org/abs/1908.10084.

13

https://doi.org/10.1145/3477495.3531863
https://api.semanticscholar.org/CorpusID:6334682
https://api.semanticscholar.org/CorpusID:6334682
https://api.semanticscholar.org/CorpusID:248852357
https://api.semanticscholar.org/CorpusID:248852357
https://openreview.net/forum?id=jKN1pXi7b0
https://aclanthology.org/2020.findings-emnlp.171
https://aclanthology.org/2020.findings-emnlp.171
https://arxiv.org/abs/1908.10084


[18] K. Song, X. Tan, T. Qin, J. Lu, and T.-Y. Liu. Mpnet: Masked and permuted pre-
training for language understanding. In Advances in Neural Information Processing Systems,
volume 33, 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/
c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf.

[19] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bashlykov, S. Batra, P. Bhargava,
S. Bhosale, D. Bikel, L. Blecher, C. C. Ferrer, M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu,
B. Fuller, C. Gao, V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas, V. Kerkez,
M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M.-A. Lachaux, T. Lavril, J. Lee, D. Liskovich, Y. Lu,
Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog, Y. Nie, A. Poulton, J. Reizenstein, R. Rungta,
K. Saladi, A. Schelten, R. Silva, E. M. Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams,
J. X. Kuan, P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez, R. Stojnic,
S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned chat models, 2023.

[20] H. Zamani, J. R. Trippas, J. Dalton, and F. Radlinski. Conversational information seeking. ArXiv,
abs/2201.08808, 2022.

[21] T. Zhang*, V. Kishore*, F. Wu*, K. Q. Weinberger, and Y. Artzi. Bertscore: Evaluating text generation
with bert. In International Conference on Learning Representations, 2020. URL https://openreview.
net/forum?id=SkeHuCVFDr.

14

https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/c3a690be93aa602ee2dc0ccab5b7b67e-Paper.pdf
https://openreview.net/forum?id=SkeHuCVFDr
https://openreview.net/forum?id=SkeHuCVFDr


A Appendix

A.1 System Design

Table 8: Response generators and their definitions

Response Generator Definition

AMBIGUOUS_ASR_RESPONDER triggered if the ASR confidence score for the user utterance is <
0.4

CHITCHAT_RESPONDER responds to general chitchat by the user

DEFAULT_RESPONDER the default responder when no responders are able to satisfy the
user query, for example - "play music", "subject question", "change
task"

DIY_STEP_DETAILS_RESPONDER responder for when user asks for more details for a DIY task

INTRO_RESPONDER generates responses to questions like "Who are you?" or "What
can you do?"

LAUNCH_RESPONDER triggered during bot launch to speak the opening phrase

NO_RESUME_RESPONDER used if the user does not want to continue a previously ongoing
task

OFFENSE_RESPONDER responds if user utterance classified to be offensive

QA_RESPONDER answers in-task and open-domain questions asked by the user
using context

REPLACEMENT_RESPONDER suggests replacement ingredients if user does not have the required
ingredient

SHOW_STEPS_RESPONDER responsible for all steps within a task, showing ingredients and
displaying the recommended next tasks on finishing the current
task

SUGGEST_RECIPE_RESPONDER suggests recipes based on occasion, cuisine or any other parameter

TASK_COMPLETE_RESPONDER farewell message to the user on exiting out of the taskbot

TASK_QUERY_RESPONDER responsible for searching the corpus for a user search query

TASK_TIPS_RESPONDER returns tips for an ongoing task when requested by the user

VIDEO_RESPONDER responds with a video of the task if the task has one upon user
request

15



A.2 Intent Classification

Table 9: Intent classes and their definitions

Intent Class Definition

search_recipe(name) tries to find instructions about a specific recipe name
search_task tries to find instructions about a specific task or DIY
suggest_recipe asks for recipe recommendations with no specific recipe mentioned
answer asks some question related to the current task or open-domain
replace(ingredient) wants to find replacement for some ingredient or tool

next_step wants to move to the next step
begin explicitly says is ready to start working on the task/recipe
done finished doing something
acknowledge acknowledges the system’s response
wait tells the system to wait for some time
deny is negative about the system’s response
stop wants to stop
show_materials wants to see the list of required ingredients or tools or list of steps
overview wants to see an overview of the task or recipe
more_results wants to see more result options
repeat wants the system to repeat what it said
goto_step(number) wants to jump to some specific step
set_timer(duration) wants to set a timer
change_task wants to change the current task or recipe
diet_restriction(diet) mentions some diet restriction he has
help generic help request
thanks thanks the system
chitchat wants to talk about something random

offense offends the system
nsfw asks for something that is nsfw
illegal_action wants to find info about some illegal action
dangerous_task wants to do some task potentially dangerous
suicide_attempt attempts to do something related to suicide
personal_information mentions some of his personal information

not_understood explicitly says he did not understand
very_specific asks for an extremely specific task or DIY
subjective_qa asks some very subjective question
command various unsupported commands related to controlling devices or apps
product_search wants to search for products such as books, etc.
play_song want to play some given song
needs_clarification when the user’s request is unclear (eg. bad syntax, incomplete sentence)

16



Table 10: Intent classification results per class for FlanT5-XL (fine-tuned) and GPT-4. Some intents
from the final taxonomy are not included here.

Intent FlanT5-XL (fine-tuned) GPT-4

Precision Recall F1-Score Precision Recall F1-Score

acknowledge 0.7 0.8 0.74 0.3 0.85 0.45
answer 0.74 0.7 0.72 0.61 0.85 0.71
begin 0.78 0.9 0.84 0.74 1 0.85
chitchat 0.85 0.28 0.42 0.89 0.5 0.64
dangerous_task 0.67 0.8 0.73 0.83 0.25 0.38
deny 0.69 0.9 0.78 0.76 0.95 0.84
diet_restriction 0.75 0.75 0.75 0.95 0.9 0.92
done 0.66 0.96 0.78 0.88 0.79 0.83
financial_advice 0.74 0.85 0.79 0.86 0.95 0.9
goto_step 0.95 0.9 0.92 1 0.7 0.82
help 0.91 0.71 0.8 0.88 0.75 0.81
legal_advice 0.88 0.7 0.78 1 0.25 0.4
more_results 0.78 0.7 0.74 1 0.7 0.82
next_step 0.87 0.65 0.74 0.68 0.75 0.71
not_understood 0.71 0.85 0.77 0.56 0.95 0.7
nsfw 0.94 0.8 0.86 0.95 0.9 0.92
offense 0.49 0.95 0.64 0.76 0.95 0.84
overview 0.8 0.6 0.69 0.72 0.65 0.68
personal_information 0.64 0.7 0.67 0.93 0.65 0.76
repeat 1 0.71 0.83 0.65 0.81 0.72
replace 0.91 0.5 0.65 0.91 1 0.95
search_task 0.55 0.85 0.67 0.67 0.93 0.78
set_timer 1 0.9 0.95 1 0.9 0.95
show_image 0.79 0.75 0.77 1 0.9 0.95
show_ingredients 0.66 0.95 0.78 0.84 0.8 0.82
show_video 1 0.7 0.82 1 1 1
stop 0.71 0.71 0.71 0.95 0.64 0.77
suggest_recipe 0.71 1 0.83 0.54 0.95 0.69
suicide_attempt 0.83 0.5 0.62 1 0.6 0.75
thanks 0.82 0.7 0.76 0.76 0.8 0.78

A.3 Image Retrieval

Figure 11: The top 5 retrieved images for the query ’Crack an egg into the skillet’ using zero-shot
CLIP (top) and fine-tuned (bottom).

17



Figure 12: The top 5 retrieved images for the query ’Fry half of the wings at a time for about 5-7
minutes, until light golden’ using zero-shot CLIP (top) and fine-tuned (bottom).

A.4 Generative Image Augmentation

Figure 13: Comparison between retrieved and generated images, with and without LoRA.

18



A.5 End-to-end System

Figure 14: The state transition graph we used for our intent-guided conversational data generation.
The edges represent user intents and the nodes system states. The states in the dashed circle on the
right can be reached through the displayed intents from any other system state.

Figure 15: An example of grounded conversation with the MarunaChef LLM.

19



A.6 Comparative Analysis

Table 11: Comparative Analysis Between Our Bot and Other Bots for Sample Queries and Features

Query Ours Bot 1 Bot 2 Bot 3 Bot 4 Bot 5 Bot 6 Bot 7

suggest me some greek recipes ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗
recipes for christmas dinner ✓ ✓ ✗ ✓ ✗ ✗ ✗ ✓
I want to make a pizza ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗
show me how to cook pancakes ✓ ✓ ✓ ✗ ✓ ✗ ✓ ✗

Feature Ours Bot 1 Bot 2 Bot 3 Bot 4 Bot 5 Bot 6 Bot 7

Shifts between recipes ✓ ✓ ✗ ✗ ✓ ✗ ✗ ✗
Uses relevant images for recipe steps ✓ ✗ ✗ ✗ ✗ ✗ ✓ ✓
Search Relevancy criteria displayed ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗

A.7 Taskbot Tracker

Figure 16: Taskbot Tracker: Tool for tacking user interactions and swiftly integrating feedback.

Figure 17: Conversation within the Taskbot Tracker
also shows average lifetime rating given by a user,
total conversations with the bot and the average turns.

Figure 18: Crucial bot metrics can
be monitored easily using the Taskbot
Tracker.

20



A.8 Full Conversation with Marunabot v2

Figure 19: A complete conversation (not from real user) with Marunabot v2 showcasing different
features of the bot.

21


	Introduction
	System Overview
	Intent Classification
	Task Retrieval
	Retrieval Models

	Question Answering
	Multimodal Integration
	Retrieval-based Image Augmentation
	Generative Image Augmentation
	Enhancing Image Aesthetics
	Visual Option Matching

	End-to-end System
	User-driven Development
	Comparative Analysis
	Conclusion & Future Work
	Appendix
	System Design
	Intent Classification
	Image Retrieval
	Generative Image Augmentation
	End-to-end System
	Comparative Analysis
	Taskbot Tracker
	Full Conversation with Marunabot v2


